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Streptococcus pneumoniae, an important pathogen causing
sepsis, sinusitis, otitis media, bacterial meningitis and bacterial
pneumonia, results in global morbidity and mortality each
year. The burden of pneumococcal disease is highest in chil-
dren and the elderly. Treatment of pneumococcal infection has
been hampered by the complexity of the host immune
response. In recent decades, the increase of S. pneumoniae
strains’ resistance to �-lactam antibiotics and other classes of
antimicrobials has made treatment even more complicated.
Fortunately, the advent of heptavalent conjugate vaccine con-
fers a high degree of protection against pneumococcal disease
and colonization caused by vaccine serotype strains. After the
introduction of conjugate pneumococcal vaccine, invasive
pneumococcal disease caused by vaccine serotypes and antibi-
otic-resistant isolates has been reduced. However, naturally
transformable pneumococci may escape vaccine-induced immunity by switching their cap-
sular genes to non-vaccine serotypes. Development of cheaper, serotype-independent vac-
cines based on a combination of protein antigens should be pursued. (Chang Gung Med J
2008;31:117-24)
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Streptococcus pneumoniae, a pathogen discovered
more than one hundred years ago, remains a lead-

ing cause of bacteremia, sinusitis, otitis media, bac-
terial meningitis and pneumonia. This bacterium is
present worldwide, and is associated with substantial
illnesses and deaths in humans.(1) Historically, study
of the biology of S. pneumoniae led to the identifica-
tion of the nature of genetic material, the phenome-
non of quorum sensing, the use of polysaccharide-
based vaccine and the recognition of bacterial resis-

tance to antimicrobial drugs.(2,3) Since the complete
genome of S. pneumoniae was decoded in 1997,
much has been discovered about the bacterial pro-
teins involved in pneumococcal disease, the regula-
tion of virulence and the regulation of DNA uptake.(4)

Recently, the landscape of pneumococcal infection
has been changed by two major events, namely,
availability of conjugate pneumococcal vaccine and
more aggressive behavior of pneumococcal pneumo-
nia.(5,6) It is now a good time to review our under-
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standing of the biology and clinical behavior of S.
pneumoniae.

S. pneumoniae virulence factors
Capsule

Polysaccharide capsule is the earliest known S.
pneumoniae virulence factor, and serves as a para-
digm for studies of immune responses and polysac-
charide biochemistry. Capsular polysaccharide is
composed of multiple sugars that help pneumococci
fight against phagocytosis. The amount of capsule
expression in the microbe changes during replication
in the host, a phenomenon known as phase varia-
tion.(7) Reduced capsule expression (transparent vari-
ant) in the nasopharynx is instrumental in exposing
the adhesins necessary for colonization, whereas
increase in capsule expression (opaque variant) is
essential for avoiding complement-mediated
opsonophagocytosis during invasive disease. Several
factors such as BOX elements, capsule locus A
(CpsA), CpsB, CpsC and CpsD, and spontaneous
sequence duplication contribute to the complex regu-
lation of capsule synthesis.(8-12)

Choline-binding proteins

S. pneumoniae possesses several choline-bind-
ing proteins on its surface that serve as a way of
attaching it to the cell surface. The most well-known
choline-binding proteins in pneumococci are
autolysin, pneumococcal surface protein C (PspC)
and pneumococcal surface protein A (PspA).
Autolysin (LytA amidase) degrades peptidoglycan of
the pneumococcal cell wall and separates daughter
cells. Lysis of pneumococci by autolysin leads to
release of the pneumococcal cell wall and pneu-
molysin, which in turn induce inflammatory respons-
es and cause tissue damage.(13) PspA is a protective
antigen of S. pneumoniae, and is able to inhibit com-
plement deposition and activation.(14,15) It contributes
to pneumococcal virulence in both bacteremia and
sepsis models.(16) PspC, also referred to as choline-
binding protein A (CbpA), acts as an adhesin, and
interacts with the polymeric immunoglobulin recep-
tor (pIgR) on mucosal epithelial cells to facilitate
adhesion and invasion.(17)

Pneumolysin and other virulence factors

The role of pneumolysin in pneumococcal infec-

tion has been well studied. Pneumolysin belongs to
the family of pore-forming toxins, which can lyse
cell membranes containing cholesterol. This toxin
also activates the complement system, induces the
production of proinflammatory mediators, recruits
inflammatory cells and causes cell apoptosis.(18,19)

Other proteins, including LPXTG-anchored protein
(hyaluronidase, neuraminidase and serine protease),
lipoprotein, hydrogen peroxide, superoxide dismu-
tase, NADH (nicotinamide adenine dinucleotide,
reduced form) oxidase, as well as zinc metallopro-
tease (immunoglobulin A protease, ZmpB and
ZmpC), also contribute to the virulence of S. pneu-
moniae. A pneumococcal pilus encoded by the rlrA
pathogenicity islet, consisting of LPXTG-containing
surface proteins and sortases, enhances adherence
and stimulates the host inflammatory response.(20)

Pneumococ-cal neuraminidases cleave sialic acid-
containing substrates. Neuraminidase A and B both
have essential roles in respiratory tract infection and
sepsis. Neuraminidase C may contribute to the abili-
ty of pneumococci to cause meningitis.(21)

Capsular type or clonal type determine the
invasive capacity of S. pneumoniae

S. pneumoniae can be divided into more than 91
distinct types according to capsular polysaccharides
but only 20 to 30 types are associated with human
diseases. Hence, there is an association between
serotype and the potential of pneumococci to cause
invasive disease. Certain serotypes, such as serotype
1 are highly invasive, mostly due to the specific
chemical composition of their capsules. Serotype 3
can evade the immune system, readily resulting in a
fatal disease.(22) Further studies of the population
biology of S. pneumoniae found that, even within the
same serotype, some individual clones (such as ST9
and ST124) were significantly overrepresented in
invasive diseases compared with carriage.(23) So far,
the exact mechanisms of why some serotypes can go
beyond colonization to cause invasive disease remain
unclear but it appears that the capsule is not suffi-
cient to determine invasive potential or inflammatory
response.(24,25) The genetic background of the host, in
addition to the capsule, also plays a critical role in
dictating virulence. Understanding the underlying
mechanism of virulent genotypes becomes a priority
in the era of the pneumococcal conjugate vaccine.
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Innate immunity
S. pneumoniae infection is countered by a robust

inflammatory reaction in the host. Complement, C-
reactive proteins (CRP), surfactant protein, Toll-like
receptors (TLR) and T cells comprise the major com-
ponents of the immune response against S. pneumo-
niae. Studies using mice deficient in specific genes
indicated that both the classical and alternative com-
plement pathways were vital in host defense against
pneumococcal infection.(26) CRP specifically binds to
phosphocholine residues of C-polysaccharide (PnC)
in the cell wall of S. pneumoniae to activate the clas-
sical pathway of complement in human serum.(27)

Lung surfactant protein-D (SP-D) facilitated the
early clearance of pneumococci in a murine model of
bronchopneumonia and bacteremia.(28) TLR2 recog-
nizes pneumococcal lipoteichoic acid (LTA) and cell
wall peptidoglycan to initiate an inflammatory
response. TLR2 also had a protective role in sys-
temic infection and nasopharyngeal colonization in a
murine model.(29,30) TLR4 recognizes pneumococcal
pneumolysin to limit pneumococcal proliferation in
the nasopharynx.(31) TLR4 also interacts with pneu-
molysin to induce mammalian cell apoptosis against
pneumococcal infection.(32) CD4 (cluster of differen-
tiation 4) T cells were found to contribute to early
protective immunity to S. pneumoniae based on stud-
ies using mice lacking the major histocompatibility
complex II (MHCII) gene.(33) However, how CD4+ T
cells function in this aspect remains unclear.

In addition, Nod1 and Nod2 are cytosolic pro-
teins of the pathogen recognition receptor within
host cells that respond to pneumococci.(34) The
myeloid differentiation factor (MyD88) is an adaptor
molecule in the signaling of the host inflammatory
cascade against pneumococcal infection.(35)

Pneumococcal colonization
The first step leading to pneumococcal disease

is nasopharyngeal colonization. S. pneumoniae
spreads through respiratory droplets. Following
exposure, the pathogen may establish itself in the
nasopharynx of the new host. The human nasophar-
ynx is the only known natural reservoir for S. pneu-
moniae. Invasive pneumococcal disease occurs when
pneumococci gain access into deep human tissues,
which might be facilitated by prior virus infection,
especially influenza virus infection.(36) S. pneumoniae
invades human nasopharyngeal epithelial cells

through a process termed reverse endocytosis medi-
ated by pIgR. Nasopharyngeal colonization is
dynamic, and influenced by overcrowding, smoking,
ethnicity and socioeconomic status.(37) Colonization
rates vary from 3% to 70% in healthy children in dif-
ferent countries and gradually decline with age up to
adulthood.(38-40) One way to reduce invasive pneumo-
coccal disease is prevention of colonization.
However, this may lead to replacement by other bac-
terial species in the nasopharynx, such as
Staphylococcus aureus and Haemophilus influen-
zae.(41) Hence, a protein-based pneumococcal vaccine
to prevent the invasive disease without disturbing the
bacterial ecology in the nasopharynx may be consid-
ered for controlling pneumococcal disease.(41)

Evolution of S. pneumoniae
S. pneumoniae was the first pathogen to demon-

strate the phenomenon of transformation. In 1944,
Avery et al. proved that the genetic material in bacte-
rial cells was DNA by using a transformation model
in S. pneumoniae.(42) Natural competence for genetic
transformation in S. pneumoniae is mediated by a
quorum sensing-regulated system. CSP, a heptade-
capeptide pheromone, induces competence in grow-
ing cells at a critical cell density by activating the 2-
component signal transduction system comDE.(3) Due
to the ability to undergo horizontal gene transfer, S.
pneumoniae easily adapts to environmental changes,
which leads to substantial genetic heterogeneity as
well as genomic plasticity (Fig. 1). The first example
is the presence of divergent mosaic blocks in peni-
cillin binding protein (PBP) genes in penicillin-resis-
tant S. pneumoniae under the selective pressure of

Fig. 1 Evolution of naturally transformable Streptococcus
pneumoniae.
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penicillin. Mosaic PBP genes evolve to be penicillin-
resistant via acquiring PBP from other Streptococcus
species.(43) The second example is the evolution to
greater virulence via recombination. Serotype 6B
causes more invasive diseases than serotype 6A. By
using multilocus sequence typing, serotype 6B
clones evolved almost exclusively by recombination,
whereas serotype 6A evolved by mutation.(44) The
third example is capsular switching under a large-
scale vaccination program.(45) Although the current
introduction of conjugate pneumococcal vaccine has
successfully reduced invasive pneumococcal disease
caused by the vaccine serotypes and effectively
decreased the spread of antimicrobial drug-resistant
isolates, pneumococcal infection remains a major
issue. At least two consequences have been noted
since the use of heptavalent conjugate vaccine. First,
serotypes not covered by the conjugate vaccine have
increased both in nasopharyngeal colonization and
clinical illness.(45) Second, serotype switching can
occur through recombination in naturally trans-
formable clones and result in the acquisition of a
non-vaccine capsule to escape vaccine-induced
immunity.(45) Furthermore, the ability of different
serotypes to be transformed affected the evolutionary
biology and genetic diversity of each serotype.
Serotype competence accounts for why the reported
serotypes that underwent in vivo capsular transfor-
mation were also antibiotic-resistant. Gene transfer
has been a powerful tool in the evolution of S. pneu-

moniae.

Emerging disease: complicated pneumonia
S. pneumoniae is the most common pathogen of

pyogenic pneumonia in children. Previous studies
have shown that the lungs return to normal after
pneumococcal pneumonia, regardless of the severity
at the peak stage of the disease. This is for two rea-
sons. First, S. pneumoniae usually induces granulo-
cyte apoptosis, which tends to limit tissue injury and
promotes the complete resolution of pneumonia.(46)

Second, S. pneumoniae produces few exotoxins
capable of inducing lung damage, in contrast to other
organisms such as Staphylococcus aureus and
Streptococcus pyogenes, which produce a variety of
tissue-damaging substances causing lung necrosis
and destructive lung injury.(47) Since the advent of the
use of penicillin, S. pneumoniae infection has rarely
developed into empyema or lung necrosis.

However, an increase of complicated pneumo-
coccal pneumonia, including necrotizing pneumonia,
lung abscess and empyema, has been observed in
children since the 1990s(5,48,49) (Table 1). The occur-
rence of complicated pneumonia was associated with
longer durations of fever, longer oxygen requirement
and longer hospital stays.(5,48) Older age, white race,
presence of immature polymorphonuclear leukocytes
in peripheral blood, high CRP levels, no underlying
disease or chest pain on presentation were predictors
of lung necrosis and/or abscess.(5,48) This increase of

Table 1. Studies of an Increase in Complicated Pneumococcal Pneumonia

Reference Country Year Pattern of complicated pneumonia Prevalent serotype

(5) U.S.A. 1993-2000 necrotizing pneumonia, pleural effusion, empyema and lung abscess 14, 1, 19, 6, 3

(50) U.S.A. 1996-2000 empyema 1, 14, 6B, 19F
(pre-PCV7)
2001-2005 empyema 1, 3, 19A
(post-PCV)

(51) U.K. 1997-2001 empyema 1, 14, 3

(54) U.K. 1997-2003 cavitary disease 1, 3, 14, 9V

(48) Taiwan 1995-2003 necrotizing pneumonia, empyema 14, 23, 19, 9

(49) Israel 1986-1997 pleural effusion, empyema, pneumothorax, pneumatocele and/or Not done
atelectasis

(55) Singapore 1997-1999 cavitary necrosis, abscess formation, empyema Not done

(56) Spain 1993-2003 parapneumonic pleural effusion Not done

Abbreviation: PCV: heptavalent conjugate vaccine.
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complicated pneumonia is not directly related to the
increase in penicillin-resistant S. pneumoniae.(5,48,49) In
the U.S., serotype 14 was the most common serotype
causing complicated pneumonia, whereas serotype 1
and serotype 3 significantly caused complicated
pneumonia compared to those serotypes causing
lobar pneumonia in children before the widespread
use of heptavalent pneumococcal conjugate vac-
cine.(5) After the utilization of conjugate vaccine,
serotype 1 remained prevalent, and serotypes 3 and
19A were increasingly detected.(50) In the U.K.,
serotype 1 was also the dominant serotype causing
pneumococcal empyema.(51) Clonal spread of pneu-
mococcal serotype 1 is speculated to contribute to
the increased complicated pneumonia in the U.S. and
U.K. Interestingly, serotype 1 S. pneumoniae was
rare in the nasopharynx but had a high clinical inci-
dence. This serotype was common in both Northern
Europe and North America in the early 20th century,
and now has become more prevalent in developing
countries such as Rwanda, Egypt and Africa.
Poverty, overcrowding and decreased availability of
antibiotics all contribute to the spread of serotype
1.(52) In view of the rare carriage of serotype 1 S.
pneumoniae, it is mysterious as to how it is transmit-
ted among humans. In most cases of culture-negative
parapneumonic pleural effusion or empyema,
serotype 1 was the frequent etiology.(51,53)

Surprisingly, several studies failed to identify
serotype 1 in clinical samples in Taiwan. Instead, the
major clone associated with complicated pneumonia
in Taiwan was serotype 14.(48) Since serotype 1 is dif-
ficult to culture, whether there is real serotype differ-
ence in complicated pneumonia is worth further
study in Taiwan.

Conclusion
Given the proclivity of horizontal gene transfer,

current advances in antimicrobial therapy and
serotype-limited conjugate vaccine are inadequate to
combat pneumococcal diseases. In the future, better
understanding of molecular interaction at the cellular
level could provide insight into the development of
protein vaccine and new modulation therapy.
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